Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Masaaki Tomura^a* and Yoshiro Yamashita^b

^aInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan, and ^bDepartment of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

Correspondence e-mail: tomura@ims.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.019 Å R factor = 0.099 wR factor = 0.189 Data-to-parameter ratio = 19.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4,5-Diiodo[1,2,5]thiadiazolotetrathiafulvalene

In the crystal structure of the title compound, 5-(4,5-diiodo-1,3-dithiol-2-ylidene)-1,3-diaza-2,4,6-trithiapentalene, C₆I₂N₂S₅, a large number of short intermolecular heteroatom contacts, such as $S \cdots N$, $S \cdots S$, $S \cdots I$, $N \cdots I$ and $I \cdots I$, are observed. The molecules, which are planar within 0.051 Å, stack along the b axis in a head-to-head fashion.

Received 21 October 2003 Accepted 1 December 2003 Online 12 December 2003

Comment

In recent years, tetrathiafulvalene (TTF) derivatives with a fused 1,2,5-thiadiazole ring have received much attention as component molecules for conducting organic solids (Tomura et al., 1993; Underhill et al., 1993; Naito et al., 1996; Tomura & Yamashita, 1997; 2003). The heteroatom intermolecular S...N and $S \cdot \cdot \cdot S$ contacts are of special intertest in these structures as they may increase the dimensionality of aggregation in the solid state (Yamashita & Tomura, 1998).

Introduction of I atoms as substituents in the TTF framework is expected to enhance intermolecular interactions through $N \cdots I$, $S \cdots I$ and $I \cdots I$ heteroatom contacts. Imakubo et al. (1998, 2002) reported supramolecular conductors and superconductors involving diiodo-diselenadithiafulvalene derivatives. Some cation radical salts derived from diiodo-TTF derivatives show a metallic conductivity (Kuwatani et al., 1997; Iyoda et al., 2001). We report here the molecular and crystal structure of an unsymmetrical TTF derivative, the title compound (I), which contains a fused 1,2,5-thiadiazole ring and two iodo substituents at the other end of the molecule.

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The molecule of (I) is planar within 0.0506 Å. The angle between the least-squares planes of the two 1,3-dithiole rings is $2.9 (6)^{\circ}$. The geometric parameters of the 1,2,5-thiadiazole ring in (I)

© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Figure 3 Packing diagram of (I), viewed along the a axis.

are almost the same as those reported for 3,4-diphenyl-1,2,5thiadiazole (Mellini & Merlino, 1976).

Fig. 2 shows a packing diagram of (I), viewed along the baxis. Numerous short intermolecular heteroatom contacts, viz. $S \cdots N$, $S \cdots S$, $S \cdots I$, $N \cdots I$ and $I \cdots I$, within the sum of the corresponding van der Waals radii (Pauling, 1960) are observed in the crystal structure (Table 2). The $S \cdots N$, $S \cdots I$ and I···I distances are 2.4, 4.2–7.2 and 8.5% shorter than the sum of the corresponding van der Waals radii, respectively. Although the N···I contacts are 3.0-6.1% shorter than the sum of the van der Waals radii, they are longer than the typical N···I distance (Desiraju & Harlow, 1989; Xu et al., 1994; Walsh *et al.*, 2001), and the corresponding $C-I \cdots N$ angles are in the range 135.4 (4) to 148.4 $(5)^{\circ}$.

The molecules form a herringbone-type stacking along the b axis, where the distance between the molecular planes is 3.592 Å (Fig. 3). The shortest intermolecular $S \cdots S$ contact [3.596 (6) Å] involves the S atoms of adjacent molecules in the stack.

Unsymmetrical TTF derivatives with a fused heterocycle tend to stack in a head-to-tail fashion (Tomura & Yamashita, 2001). In the stacking of (I), however, the molecules overlap head-to-head with each other.

Experimental

The title compound, (I), was synthesized by the reaction of [1,2,5]thiadiazolo-1,3-dithiol-2-one (Tomura & Yamashita, 1997) with 4,5diiodo-1,3-dithiole-2-thione (Gompper et al., 1994). To a solution of [1,2,5]thiadiazolo-1,3-dithiol-2-one (211 mg, 1.20 mmol) and 4,5-diiodo-1,3-dithiole-2-thione (463 mg, 1.20 mmol) in toluene (10 ml), trimethyl phosphite (1490 mg, 12.00 mmol) was added, and the reaction mixture was refluxed for 2 h. After the mixture was cooled for 6 h at 277 K, the resulting dark yellow precipitate was collected to give 345 mg (56% yield) of (I). Physical data for (I): m.p. 513–515 K; MS (EI): m/z 514 (M^+). Yellow crystals of (I) suitable for X-ray analysis were grown from a dichloromethane solution.

Crystal data

$C_6I_2N_2S_5$	$D_x = 2.860 \text{ Mg m}^{-3}$
$M_r = 514.18$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3488
a = 12.180(5) Å	reflections
b = 4.8825 (17) Å	$\theta = 3.0-27.5^{\circ}$
c = 20.083 (8) Å	$\mu = 6.11 \text{ mm}^{-1}$
$\beta = 91.152 \ (9)^{\circ}$	T = 296 (2) K
V = 1194.1 (8) Å ³	Needle, yellow
Z = 4	$0.50 \times 0.08 \times 0.03 \text{ mm}$

2709 independent reflections

 $R_{\rm int}=0.078$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -15 \rightarrow 14$

 $l = -25 \rightarrow 25$

 $k = -6 \rightarrow 4$

2256 reflections with $I > 2\sigma(I)$

Data collection

Rigaku Mercury CCD diffractometer φ and ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.146, \ \bar{T}_{\max} = 0.836$ 11499 measured reflections

Refinement

```
Refinement on F^2
                                                             w = 1/[\sigma^2(F_o^2) + (0.0449P)^2]
R[F^2 > 2\sigma(F^2)] = 0.099
                                                                  + 25.5736P]
                                                                where P = (F_o^2 + 2F_c^2)/3
wR(F^2) = 0.189
                                                             (\Delta/\sigma)_{\rm max} < 0.001
S = 1.31
                                                            \Delta \rho_{\rm max} = 1.79 \text{ e } \text{\AA}^{-3}
2709 reflections
                                                             \Delta \rho_{\rm min} = -1.31 \text{ e } \text{\AA}^{-3}
136 parameters
```

Table 1

Selected geometric parameters (Å, °).

I1-C2	2.083 (13)	S4-C6	1.734 (13)
I2-C3	2.054 (13)	S5-N1	1.641 (12)
S1-C1	1.771 (14)	S5-N2	1.648 (13)
S1-C2	1.739 (13)	N1-C5	1.288 (17)
S2-C1	1.758 (13)	N2-C6	1.324 (17)
S2-C3	1.756 (14)	C1-C4	1.309 (18)
S3-C4	1.754 (14)	C2-C3	1.327 (19)
S3-C5	1.761 (14)	C5-C6	1.417 (18)
S4-C4	1.796 (14)		
C2-S1-C1	94.9 (6)	C2-C3-S2	117.1 (10)
C1-S2-C3	95.3 (6)	C2-C3-I2	126.4 (10)
C4-S3-C5	95.1 (6)	S2-C3-I2	116.5 (7)
C6-S4-C4	93.5 (6)	C1-C4-S3	123.3 (11)
N2-S5-N1	99.1 (6)	C1-C4-S4	120.0 (11)
C5-N1-S5	106.1 (10)	S3-C4-S4	116.7 (8)
C6-N2-S5	105.7 (9)	N1-C5-C6	115.7 (12)
C4-C1-S2	124.3 (11)	N1-C5-S3	128.8 (11)
C4-C1-S1	121.6 (11)	C6-C5-S3	115.5 (10)
S2-C1-S1	114.0 (7)	N2-C6-C5	113.4 (12)
C3-C2-S1	118.6 (10)	N2-C6-S4	127.4 (10)
C3-C2-I1	125.8 (10)	C5-C6-S4	119.2 (10)
S1-C2-I1	115.5 (7)		×

Table 2	
Contact distances (Å).	

$I1 \cdot \cdot \cdot N1^i$	3.564 (12)	$I2 \cdot \cdot \cdot S5^{iii}$	3.670 (4)
$I1 \cdot \cdot \cdot S3^i$	3.786 (4)	$I2 \cdot \cdot \cdot S4^{iv}$	3.666 (4)
$I1 \cdot \cdot \cdot I2^{ii}$	3.934 (2)	$S3 \cdot \cdot \cdot S5^v$	3.596 (6)
$I2 \cdot \cdot \cdot N1^{iii}$	3.473 (12)	$S5 \cdot \cdot \cdot N2^{vi}$	3.269 (13)
$I2 \cdot \cdot \cdot N2^{iv}$	3.590 (12)		. ,

Symmetry codes: (i) -x, 2-y, -z; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, -\frac{1}{2}-z$; (iii) $\frac{1}{2}+x, \frac{3}{2}-y, z-\frac{1}{2}$; (iv) 1-x, 1-y, -z; (v) x, 1+y, z; (vi) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

The largest positive and negative features of the final difference map were found near the I atoms. The crystals showed rather weak diffracting ability, with a steep decrease of intensities towards higher angles; this accounts for the rather low precision of the structure.

Data collection: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2001); cell refinement: *CrystalClear*; data reduction: *TEXSAN* (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP*III (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL97*.

References

Burnett, M. N. & Johnson, C. K. (1996). *ORTEP*III. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.

- Gompper, R., Hansel, J.-G., Hock, J., Polborn, K., Dormann, E. & Winter, H. (1994). Phosphorus Sulfur Silicon Relat. Elem. 95–96, 521–525.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Imakubo, T., Maruyama, T., Sawa, H. & Kobayashi, K. (1998). Chem. Commun. pp. 2021–2022.
- Imakubo, T., Tajima, N., Tamura, M., Kato, R., Nishio, Y. & Kajita, K. (2002). J. Mater. Chem. 12, 159–161.
- Iyoda, M., Kuwatani, Y., Ogura, E., Hara, K., Suzuki, H., Takano, T., Takeda, K., Takano, J., Ugawa, K., Yoshida, M., Matsuyama, H., Nishikawa, H., Ikemoto, I., Kato, T., Yoneyama, N., Nishijo, J., Miyazaki, A. & Enoki, T. (2001). *Heterocycles*, **54**, 833–843.
- Kuwatani, Y., Ogura, E., Nishikawa, H., Ikemoto, I. & Iyoda, M. (1997). Chem. Lett. pp. 817–818.
- Mellini, M. & Merlino, S. (1976). Acta Cryst. B32, 1074-1078.
- Molecular Structure Corporation & Rigaku (2000). *TEXSAN*. Version 1.11. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3–9–12 Akishima, Tokyo, Japan.
- Molecular Structure Corporation & Rigaku (2001). *CrystalClear*. Version 1.3. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3–9–12 Akishima, Tokyo, Japan.
- Naito, T., Kobayashi, A., Kobayashi, H. & Underhill, A. E. (1996). Chem. Commun. pp. 521–522.
- Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell University Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tomura, M., Tanaka, S. & Yamashita, Y. (1993). Heterocycles, 35, 69-72.

Tomura, M. & Yamashita, Y. (1997). Synth. Met. 86, 1871-1872.

- Tomura, M. & Yamashita, Y. (2001). Acta Cryst. E57, o307-o308.
- Tomura, M. & Yamashita, Y. (2003). Acta Cryst. E59, o145-o147.
- Underhill, A. E., Hawkins, I., Edge, S. & Wilkes, S. B. (1993). Synth. Met. 56, 1914–1919.
- Walsh, R. B., Padgett, C. W., Metrangolo, P., Resnati, G., Hanks, T. W. & Pennington, W. T. (2001). Cryst. Growth Des. 1, 165–175.
- Xu, K., Ho, D. M. & Pascal, R. A. Jr (1994). J. Am. Chem. Soc. 116, 105-111.
- Yamashita, Y. & Tomura, M. (1998). J. Mater. Chem. 8, 1933-1944.